ck_read_yaml() allows to create perturbation parameter inputs from yaml-files that were previously created using ck_params_cnts() or ck_params_nums().

ck_read_yaml(path)

Arguments

path

a path to a yaml-input file

Value

an object object suitable as input to method $params_nums_set() for the perturbation of continous variables in case path was created using ck_params_nums() or an object suitable as input for $params_cnts_set() for the perturbation of counts and frequencies if the input file was generated using ck_params_cnts().

Examples

# \donttest{
x <- ck_create_testdata()

# create some 0/1 variables that should be perturbed later
x[, cnt_females := ifelse(sex == "male", 0, 1)]
#>       urbrur roof walls water electcon relat    sex        age hhcivil expend
#>    1:      2    4     3     3        1     1   male age_group3       2   9093
#>    2:      2    4     3     3        1     2 female age_group3       2   2734
#>    3:      2    4     3     3        1     3   male age_group1       1   2652
#>    4:      2    4     3     3        1     3   male age_group1       1   1807
#>    5:      2    4     2     3        1     1   male age_group4       2    671
#>   ---                                                                        
#> 4576:      2    4     3     4        1     2 female age_group3       2   3696
#> 4577:      2    4     3     4        1     3   male age_group1       1    282
#> 4578:      2    4     3     4        1     3   male age_group1       1    840
#> 4579:      2    4     3     4        1     3 female age_group1       1   6258
#> 4580:      2    4     3     4        1     3   male age_group1       1   7019
#>       income savings ori_hid sampling_weight household_weights cnt_females
#>    1:   5780      12       1              91          25.00000           0
#>    2:   2530      28       1              40          25.00000           1
#>    3:   6920     550       1              39          25.00000           0
#>    4:   7960     870       1              81          25.00000           0
#>    5:   9030      20       2              72          16.66667           0
#>   ---                                                                     
#> 4576:   7900     278    1000              83          16.66667           1
#> 4577:   1420     987    1000              86          16.66667           0
#> 4578:   8900     684    1000              60          16.66667           0
#> 4579:   3880     294    1000              75          16.66667           1
#> 4580:   4830     911    1000              80          16.66667           0
x[, cnt_males := ifelse(sex == "male", 1, 0)]
#>       urbrur roof walls water electcon relat    sex        age hhcivil expend
#>    1:      2    4     3     3        1     1   male age_group3       2   9093
#>    2:      2    4     3     3        1     2 female age_group3       2   2734
#>    3:      2    4     3     3        1     3   male age_group1       1   2652
#>    4:      2    4     3     3        1     3   male age_group1       1   1807
#>    5:      2    4     2     3        1     1   male age_group4       2    671
#>   ---                                                                        
#> 4576:      2    4     3     4        1     2 female age_group3       2   3696
#> 4577:      2    4     3     4        1     3   male age_group1       1    282
#> 4578:      2    4     3     4        1     3   male age_group1       1    840
#> 4579:      2    4     3     4        1     3 female age_group1       1   6258
#> 4580:      2    4     3     4        1     3   male age_group1       1   7019
#>       income savings ori_hid sampling_weight household_weights cnt_females
#>    1:   5780      12       1              91          25.00000           0
#>    2:   2530      28       1              40          25.00000           1
#>    3:   6920     550       1              39          25.00000           0
#>    4:   7960     870       1              81          25.00000           0
#>    5:   9030      20       2              72          16.66667           0
#>   ---                                                                     
#> 4576:   7900     278    1000              83          16.66667           1
#> 4577:   1420     987    1000              86          16.66667           0
#> 4578:   8900     684    1000              60          16.66667           0
#> 4579:   3880     294    1000              75          16.66667           1
#> 4580:   4830     911    1000              80          16.66667           0
#>       cnt_males
#>    1:         1
#>    2:         0
#>    3:         1
#>    4:         1
#>    5:         1
#>   ---          
#> 4576:         0
#> 4577:         1
#> 4578:         1
#> 4579:         0
#> 4580:         1
x[, cnt_highincome := ifelse(income >= 9000, 1, 0)]
#>       urbrur roof walls water electcon relat    sex        age hhcivil expend
#>    1:      2    4     3     3        1     1   male age_group3       2   9093
#>    2:      2    4     3     3        1     2 female age_group3       2   2734
#>    3:      2    4     3     3        1     3   male age_group1       1   2652
#>    4:      2    4     3     3        1     3   male age_group1       1   1807
#>    5:      2    4     2     3        1     1   male age_group4       2    671
#>   ---                                                                        
#> 4576:      2    4     3     4        1     2 female age_group3       2   3696
#> 4577:      2    4     3     4        1     3   male age_group1       1    282
#> 4578:      2    4     3     4        1     3   male age_group1       1    840
#> 4579:      2    4     3     4        1     3 female age_group1       1   6258
#> 4580:      2    4     3     4        1     3   male age_group1       1   7019
#>       income savings ori_hid sampling_weight household_weights cnt_females
#>    1:   5780      12       1              91          25.00000           0
#>    2:   2530      28       1              40          25.00000           1
#>    3:   6920     550       1              39          25.00000           0
#>    4:   7960     870       1              81          25.00000           0
#>    5:   9030      20       2              72          16.66667           0
#>   ---                                                                     
#> 4576:   7900     278    1000              83          16.66667           1
#> 4577:   1420     987    1000              86          16.66667           0
#> 4578:   8900     684    1000              60          16.66667           0
#> 4579:   3880     294    1000              75          16.66667           1
#> 4580:   4830     911    1000              80          16.66667           0
#>       cnt_males cnt_highincome
#>    1:         1              0
#>    2:         0              0
#>    3:         1              0
#>    4:         1              0
#>    5:         1              1
#>   ---                         
#> 4576:         0              0
#> 4577:         1              0
#> 4578:         1              0
#> 4579:         0              0
#> 4580:         1              0
# a variable with positive and negative contributions
x[, mixed := sample(-10:10, nrow(x), replace = TRUE)]
#>       urbrur roof walls water electcon relat    sex        age hhcivil expend
#>    1:      2    4     3     3        1     1   male age_group3       2   9093
#>    2:      2    4     3     3        1     2 female age_group3       2   2734
#>    3:      2    4     3     3        1     3   male age_group1       1   2652
#>    4:      2    4     3     3        1     3   male age_group1       1   1807
#>    5:      2    4     2     3        1     1   male age_group4       2    671
#>   ---                                                                        
#> 4576:      2    4     3     4        1     2 female age_group3       2   3696
#> 4577:      2    4     3     4        1     3   male age_group1       1    282
#> 4578:      2    4     3     4        1     3   male age_group1       1    840
#> 4579:      2    4     3     4        1     3 female age_group1       1   6258
#> 4580:      2    4     3     4        1     3   male age_group1       1   7019
#>       income savings ori_hid sampling_weight household_weights cnt_females
#>    1:   5780      12       1              91          25.00000           0
#>    2:   2530      28       1              40          25.00000           1
#>    3:   6920     550       1              39          25.00000           0
#>    4:   7960     870       1              81          25.00000           0
#>    5:   9030      20       2              72          16.66667           0
#>   ---                                                                     
#> 4576:   7900     278    1000              83          16.66667           1
#> 4577:   1420     987    1000              86          16.66667           0
#> 4578:   8900     684    1000              60          16.66667           0
#> 4579:   3880     294    1000              75          16.66667           1
#> 4580:   4830     911    1000              80          16.66667           0
#>       cnt_males cnt_highincome mixed
#>    1:         1              0     4
#>    2:         0              0     5
#>    3:         1              0     1
#>    4:         1              0     5
#>    5:         1              1    10
#>   ---                               
#> 4576:         0              0    -1
#> 4577:         1              0     5
#> 4578:         1              0     3
#> 4579:         0              0     0
#> 4580:         1              0    -5

# create record keys
x$rkey <- ck_generate_rkeys(dat = x)

# define required inputs

# hierarchy with some bogus codes
d_sex <- hier_create(root = "Total", nodes = c("male", "female"))
d_sex <- hier_add(d_sex, root = "female", "f")
d_sex <- hier_add(d_sex, root = "male", "m")

d_age <- hier_create(root = "Total", nodes = paste0("age_group", 1:6))
d_age <- hier_add(d_age, root = "age_group1", "ag1a")
d_age <- hier_add(d_age, root = "age_group2", "ag2a")

# define the cell key object
countvars <- c("cnt_females", "cnt_males", "cnt_highincome")
numvars <- c("expend", "income", "savings", "mixed")
tab <- ck_setup(
  x = x,
  rkey = "rkey",
  dims = list(sex = d_sex, age = d_age),
  w = "sampling_weight",
  countvars = countvars,
  numvars = numvars)
#> computing contributing indices | rawdata <--> table; this might take a while

# show some information about this table instance
tab$print() # identical with print(tab)
#> ── Table Information ───────────────────────────────────────────────────────────
#> ✔ 45 cells in 2 dimensions ('sex', 'age')
#> ✔ weights: yes
#> ── Tabulated / Perturbed countvars ─────────────────────────────────────────────
#> ☐ 'total'
#> ☐ 'cnt_females'
#> ☐ 'cnt_males'
#> ☐ 'cnt_highincome'
#> ── Tabulated / Perturbed numvars ───────────────────────────────────────────────
#> ☐ 'expend'
#> ☐ 'income'
#> ☐ 'savings'
#> ☐ 'mixed'

# information about the hierarchies
tab$hierarchy_info()
#> $sex
#>      code level is_leaf parent
#> 1:  Total     1   FALSE  Total
#> 2:   male     2   FALSE  Total
#> 3:      m     3    TRUE   male
#> 4: female     2   FALSE  Total
#> 5:      f     3    TRUE female
#> 
#> $age
#>          code level is_leaf     parent
#> 1:      Total     1   FALSE      Total
#> 2: age_group1     2   FALSE      Total
#> 3:       ag1a     3    TRUE age_group1
#> 4: age_group2     2   FALSE      Total
#> 5:       ag2a     3    TRUE age_group2
#> 6: age_group3     2    TRUE      Total
#> 7: age_group4     2    TRUE      Total
#> 8: age_group5     2    TRUE      Total
#> 9: age_group6     2    TRUE      Total
#> 

# which variables have been defined?
tab$allvars()
#> $cntvars
#> [1] "total"          "cnt_females"    "cnt_males"      "cnt_highincome"
#> 
#> $numvars
#> [1] "expend"  "income"  "savings" "mixed"  
#> 

# count variables
tab$cntvars()
#> [1] "total"          "cnt_females"    "cnt_males"      "cnt_highincome"

# continuous variables
tab$numvars()
#> [1] "expend"  "income"  "savings" "mixed"  

# create perturbation parameters for "total" variable and
# write to yaml-file

# create a ptable using functionality from the ptable-pkg
f_yaml <- tempfile(fileext = ".yaml")
p_cnts1 <- ck_params_cnts(
  ptab = ptable::pt_ex_cnts(),
  path = f_yaml)
#> yaml configuration '/tmp/RtmpV7PINT/file19626b539335.yaml' successfully written.

# read parameters from yaml-file and set them for variable `"total"`
p_cnts1 <- ck_read_yaml(path = f_yaml)

tab$params_cnts_set(val = p_cnts1, v = "total")
#> --> setting perturbation parameters for variable 'total'

# create alternative perturbation parameters by specifying parameters
para2 <- ptable::create_cnt_ptable(
  D = 8, V = 3, js = 2, create = FALSE)

p_cnts2 <- ck_params_cnts(ptab = para2)

# use these ptable it for the remaining variables
tab$params_cnts_set(val = p_cnts2, v = countvars)
#> --> setting perturbation parameters for variable 'cnt_females'
#> --> setting perturbation parameters for variable 'cnt_males'
#> --> setting perturbation parameters for variable 'cnt_highincome'

# perturb a variable
tab$perturb(v = "total")
#> Count variable 'total' was perturbed.

# multiple variables can be perturbed as well
tab$perturb(v = c("cnt_males", "cnt_highincome"))
#> Count variable 'cnt_males' was perturbed.
#> Count variable 'cnt_highincome' was perturbed.

# return weighted and unweighted results
tab$freqtab(v = c("total", "cnt_males"))
#>        sex        age     vname  uwc     wc puwc         pwc
#>  1:  Total      Total     total 4580 275314 4580 275314.0000
#>  2:  Total age_group1     total 1969 118338 1969 118338.0000
#>  3:  Total       ag1a     total 1969 118338 1969 118338.0000
#>  4:  Total age_group2     total 1143  68779 1142  68718.8259
#>  5:  Total       ag2a     total 1143  68779 1142  68718.8259
#>  6:  Total age_group3     total  864  52029  865  52089.2188
#>  7:  Total age_group4     total  423  25161  424  25220.4823
#>  8:  Total age_group5     total  168  10255  168  10255.0000
#>  9:  Total age_group6     total   13    752   13    752.0000
#> 10:   male      Total     total 2296 137457 2298 137576.7361
#> 11:      m      Total     total 2296 137457 2298 137576.7361
#> 12:   male age_group1     total 1015  61151 1014  61090.7527
#> 13:      m age_group1     total 1015  61151 1014  61090.7527
#> 14:   male       ag1a     total 1015  61151 1014  61090.7527
#> 15:      m       ag1a     total 1015  61151 1014  61090.7527
#> 16:   male age_group2     total  571  34403  570  34342.7496
#> 17:      m age_group2     total  571  34403  570  34342.7496
#> 18:   male       ag2a     total  571  34403  570  34342.7496
#> 19:      m       ag2a     total  571  34403  570  34342.7496
#> 20:   male age_group3     total  424  24788  424  24788.0000
#> 21:      m age_group3     total  424  24788  424  24788.0000
#> 22:   male age_group4     total  195  11295  193  11179.1538
#> 23:      m age_group4     total  195  11295  193  11179.1538
#> 24:   male age_group5     total   84   5393   84   5393.0000
#> 25:      m age_group5     total   84   5393   84   5393.0000
#> 26:   male age_group6     total    7    427    8    488.0000
#> 27:      m age_group6     total    7    427    8    488.0000
#> 28: female      Total     total 2284 137857 2284 137857.0000
#> 29:      f      Total     total 2284 137857 2284 137857.0000
#> 30: female age_group1     total  954  57187  953  57127.0556
#> 31:      f age_group1     total  954  57187  953  57127.0556
#> 32: female       ag1a     total  954  57187  953  57127.0556
#> 33:      f       ag1a     total  954  57187  953  57127.0556
#> 34: female age_group2     total  572  34376  571  34315.9021
#> 35:      f age_group2     total  572  34376  571  34315.9021
#> 36: female       ag2a     total  572  34376  571  34315.9021
#> 37:      f       ag2a     total  572  34376  571  34315.9021
#> 38: female age_group3     total  440  27241  439  27179.0886
#> 39:      f age_group3     total  440  27241  439  27179.0886
#> 40: female age_group4     total  228  13866  229  13926.8158
#> 41:      f age_group4     total  228  13866  229  13926.8158
#> 42: female age_group5     total   84   4862   83   4804.1190
#> 43:      f age_group5     total   84   4862   83   4804.1190
#> 44: female age_group6     total    6    325    7    379.1667
#> 45:      f age_group6     total    6    325    7    379.1667
#> 46:  Total      Total cnt_males 2296 137457 2299 137636.6041
#> 47:  Total age_group1 cnt_males 1015  61151 1014  61090.7527
#> 48:  Total       ag1a cnt_males 1015  61151 1014  61090.7527
#> 49:  Total age_group2 cnt_males  571  34403  569  34282.4991
#> 50:  Total       ag2a cnt_males  571  34403  569  34282.4991
#> 51:  Total age_group3 cnt_males  424  24788  424  24788.0000
#> 52:  Total age_group4 cnt_males  195  11295  192  11121.2308
#> 53:  Total age_group5 cnt_males   84   5393   83   5328.7976
#> 54:  Total age_group6 cnt_males    7    427    8    488.0000
#> 55:   male      Total cnt_males 2296 137457 2299 137636.6041
#> 56:      m      Total cnt_males 2296 137457 2299 137636.6041
#> 57:   male age_group1 cnt_males 1015  61151 1014  61090.7527
#> 58:      m age_group1 cnt_males 1015  61151 1014  61090.7527
#> 59:   male       ag1a cnt_males 1015  61151 1014  61090.7527
#> 60:      m       ag1a cnt_males 1015  61151 1014  61090.7527
#> 61:   male age_group2 cnt_males  571  34403  569  34282.4991
#> 62:      m age_group2 cnt_males  571  34403  569  34282.4991
#> 63:   male       ag2a cnt_males  571  34403  569  34282.4991
#> 64:      m       ag2a cnt_males  571  34403  569  34282.4991
#> 65:   male age_group3 cnt_males  424  24788  424  24788.0000
#> 66:      m age_group3 cnt_males  424  24788  424  24788.0000
#> 67:   male age_group4 cnt_males  195  11295  192  11121.2308
#> 68:      m age_group4 cnt_males  195  11295  192  11121.2308
#> 69:   male age_group5 cnt_males   84   5393   83   5328.7976
#> 70:      m age_group5 cnt_males   84   5393   83   5328.7976
#> 71:   male age_group6 cnt_males    7    427    8    488.0000
#> 72:      m age_group6 cnt_males    7    427    8    488.0000
#> 73: female      Total cnt_males    0      0    0      0.0000
#> 74:      f      Total cnt_males    0      0    0      0.0000
#> 75: female age_group1 cnt_males    0      0    0      0.0000
#> 76:      f age_group1 cnt_males    0      0    0      0.0000
#> 77: female       ag1a cnt_males    0      0    0      0.0000
#> 78:      f       ag1a cnt_males    0      0    0      0.0000
#> 79: female age_group2 cnt_males    0      0    0      0.0000
#> 80:      f age_group2 cnt_males    0      0    0      0.0000
#> 81: female       ag2a cnt_males    0      0    0      0.0000
#> 82:      f       ag2a cnt_males    0      0    0      0.0000
#> 83: female age_group3 cnt_males    0      0    0      0.0000
#> 84:      f age_group3 cnt_males    0      0    0      0.0000
#> 85: female age_group4 cnt_males    0      0    0      0.0000
#> 86:      f age_group4 cnt_males    0      0    0      0.0000
#> 87: female age_group5 cnt_males    0      0    0      0.0000
#> 88:      f age_group5 cnt_males    0      0    0      0.0000
#> 89: female age_group6 cnt_males    0      0    0      0.0000
#> 90:      f age_group6 cnt_males    0      0    0      0.0000
#>        sex        age     vname  uwc     wc puwc         pwc

# numerical variables (positive variables using flex-function)
# we also write the config to a yaml file
f_yaml <- tempfile(fileext = ".yaml")

# create a ptable using functionality from the ptable-pkg
# a single ptable for all cells
ptab1 <- ptable::pt_ex_nums(parity = TRUE, separation = FALSE)

# a single ptab for all cells except for very small ones
ptab2 <- ptable::pt_ex_nums(parity = TRUE, separation = TRUE)

# different ptables for cells with even/odd number of contributors
# and very small cells
ptab3 <- ptable::pt_ex_nums(parity = FALSE, separation = TRUE)

p_nums1 <- ck_params_nums(
  ptab = ptab1,
  type = "top_contr",
  top_k = 3,
  mult_params = ck_flexparams(
    fp = 1000,
    p = c(0.30, 0.03),
    epsilon = c(1, 0.5, 0.2),
    q = 3),
  mu_c = 2,
  same_key = FALSE,
  use_zero_rkeys = FALSE,
  path = f_yaml)
#> yaml configuration '/tmp/RtmpV7PINT/file196212550349.yaml' successfully written.

# we read the parameters from the yaml-file
p_nums1 <- ck_read_yaml(path = f_yaml)

# for variables with positive and negative values
p_nums2 <- ck_params_nums(
  ptab = ptab2,
  type = "top_contr",
  top_k = 3,
  mult_params = ck_flexparams(
    fp = 1000,
    p = c(0.15, 0.02),
    epsilon = c(1, 0.4, 0.15),
    q = 3),
  mu_c = 2,
  same_key = FALSE)

# simple perturbation parameters (not using the flex-function approach)
p_nums3 <- ck_params_nums(
  ptab = ptab3,
  type = "mean",
  mult_params = ck_simpleparams(p = 0.25),
  mu_c = 2,
  same_key = FALSE)

# use `p_nums1` for all variables
tab$params_nums_set(p_nums1, c("savings", "income", "expend"))
#> --> setting perturbation parameters for variable 'savings'
#> --> setting perturbation parameters for variable 'income'
#> --> setting perturbation parameters for variable 'expend'

# use different parameters for variable `mixed`
tab$params_nums_set(p_nums2, v = "mixed")
#> --> setting perturbation parameters for variable 'mixed'

# identify sensitive cells to which extra protection (`mu_c`) is added.
tab$supp_p(v = "income", p = 85)
#> computing contributing indices | rawdata <--> table; this might take a while
#> p%-rule: 0 new sensitive cells (incl. duplicates) found (total: 0)
tab$supp_pq(v = "income", p = 85, q = 90)
#> computing contributing indices | rawdata <--> table; this might take a while
#> pq-rule: 0 new sensitive cells (incl. duplicates) found (total: 0)
tab$supp_nk(v = "income", n = 2, k = 90)
#> computing contributing indices | rawdata <--> table; this might take a while
#> nk-rule: 0 new sensitive cells (incl. duplicates) found (total: 0)
tab$supp_freq(v = "income", n = 14, weighted = FALSE)
#> freq-rule: 5 new sensitive cells (incl. duplicates) found (total: 5)
tab$supp_val(v = "income", n = 10000, weighted = TRUE)
#> val-rule: 0 new sensitive cells (incl. duplicates) found (total: 5)
tab$supp_cells(
  v = "income",
  inp = data.frame(
    sex = c("female", "female"),
    "age" = c("age_group1", "age_group3")
  )
)
#> cell-rule: 2 new sensitive cells (incl. duplicates) found (total: 7)

# perturb variables
tab$perturb(v = c("income", "savings"))
#> Numeric variable 'income' was perturbed.
#> Numeric variable 'savings' was perturbed.

# extract results
tab$numtab("income", mean_before_sum = TRUE)
#>        sex        age  vname      uws         ws        pws
#>  1:  Total      Total income 22952978 1371133298 1371188562
#>  2:  Total age_group1 income  9810547  589771142  589676502
#>  3:  Total       ag1a income  9810547  589771142  589676502
#>  4:  Total age_group2 income  5692119  340593269  340673243
#>  5:  Total       ag2a income  5692119  340593269  340673243
#>  6:  Total age_group3 income  4406946  259564658  259615518
#>  7:  Total age_group4 income  2133543  127402640  127326590
#>  8:  Total age_group5 income   848151   50226475   50385460
#>  9:  Total age_group6 income    61672    3575114    3760484
#> 10:   male      Total income 11262049  669913462  669807221
#> 11:      m      Total income 11262049  669913462  669807221
#> 12:   male age_group1 income  4877164  293952134  293934782
#> 13:      m age_group1 income  4877164  293952134  293934782
#> 14:   male       ag1a income  4877164  293952134  293934782
#> 15:      m       ag1a income  4877164  293952134  293934782
#> 16:   male age_group2 income  2811379  170935848  171009368
#> 17:      m age_group2 income  2811379  170935848  171009368
#> 18:   male       ag2a income  2811379  170935848  171009368
#> 19:      m       ag2a income  2811379  170935848  171009368
#> 20:   male age_group3 income  2168169  123293888  123248660
#> 21:      m age_group3 income  2168169  123293888  123248660
#> 22:   male age_group4 income   978510   55380341   55374435
#> 23:      m age_group4 income   978510   55380341   55374435
#> 24:   male age_group5 income   393134   24274471   24304497
#> 25:      m age_group5 income   393134   24274471   24304497
#> 26:   male age_group6 income    33693    2076780    2278093
#> 27:      m age_group6 income    33693    2076780    2278093
#> 28: female      Total income 11690929  701219836  701238876
#> 29:      f      Total income 11690929  701219836  701238876
#> 30: female age_group1 income  4933383  295819008  295737452
#> 31:      f age_group1 income  4933383  295819008  295737452
#> 32: female       ag1a income  4933383  295819008  295737452
#> 33:      f       ag1a income  4933383  295819008  295737452
#> 34: female age_group2 income  2880740  169657421  169731190
#> 35:      f age_group2 income  2880740  169657421  169731190
#> 36: female       ag2a income  2880740  169657421  169731190
#> 37:      f       ag2a income  2880740  169657421  169731190
#> 38: female age_group3 income  2238777  136270770  136308068
#> 39:      f age_group3 income  2238777  136270770  136308068
#> 40: female age_group4 income  1155033   72022299   72128182
#> 41:      f age_group4 income  1155033   72022299   72128182
#> 42: female age_group5 income   455017   25952004   25810397
#> 43:      f age_group5 income   455017   25952004   25810397
#> 44: female age_group6 income    27979    1498334    1752194
#> 45:      f age_group6 income    27979    1498334    1752194
#>        sex        age  vname      uws         ws        pws
tab$numtab("income", mean_before_sum = FALSE)
#>        sex        age  vname      uws         ws        pws
#>  1:  Total      Total income 22952978 1371133298 1371160930
#>  2:  Total age_group1 income  9810547  589771142  589723820
#>  3:  Total       ag1a income  9810547  589771142  589723820
#>  4:  Total age_group2 income  5692119  340593269  340633254
#>  5:  Total       ag2a income  5692119  340593269  340633254
#>  6:  Total age_group3 income  4406946  259564658  259590087
#>  7:  Total age_group4 income  2133543  127402640  127364609
#>  8:  Total age_group5 income   848151   50226475   50305905
#>  9:  Total age_group6 income    61672    3575114    3666628
#> 10:   male      Total income 11262049  669913462  669860339
#> 11:      m      Total income 11262049  669913462  669860339
#> 12:   male age_group1 income  4877164  293952134  293943458
#> 13:      m age_group1 income  4877164  293952134  293943458
#> 14:   male       ag1a income  4877164  293952134  293943458
#> 15:      m       ag1a income  4877164  293952134  293943458
#> 16:   male age_group2 income  2811379  170935848  170972604
#> 17:      m age_group2 income  2811379  170935848  170972604
#> 18:   male       ag2a income  2811379  170935848  170972604
#> 19:      m       ag2a income  2811379  170935848  170972604
#> 20:   male age_group3 income  2168169  123293888  123271272
#> 21:      m age_group3 income  2168169  123293888  123271272
#> 22:   male age_group4 income   978510   55380341   55377388
#> 23:      m age_group4 income   978510   55380341   55377388
#> 24:   male age_group5 income   393134   24274471   24289479
#> 25:      m age_group5 income   393134   24274471   24289479
#> 26:   male age_group6 income    33693    2076780    2175109
#> 27:      m age_group6 income    33693    2076780    2175109
#> 28: female      Total income 11690929  701219836  701229356
#> 29:      f      Total income 11690929  701219836  701229356
#> 30: female age_group1 income  4933383  295819008  295778227
#> 31:      f age_group1 income  4933383  295819008  295778227
#> 32: female       ag1a income  4933383  295819008  295778227
#> 33:      f       ag1a income  4933383  295819008  295778227
#> 34: female age_group2 income  2880740  169657421  169694302
#> 35:      f age_group2 income  2880740  169657421  169694302
#> 36: female       ag2a income  2880740  169657421  169694302
#> 37:      f       ag2a income  2880740  169657421  169694302
#> 38: female age_group3 income  2238777  136270770  136289418
#> 39:      f age_group3 income  2238777  136270770  136289418
#> 40: female age_group4 income  1155033   72022299   72075221
#> 41:      f age_group4 income  1155033   72022299   72075221
#> 42: female age_group5 income   455017   25952004   25881104
#> 43:      f age_group5 income   455017   25952004   25881104
#> 44: female age_group6 income    27979    1498334    1620300
#> 45:      f age_group6 income    27979    1498334    1620300
#>        sex        age  vname      uws         ws        pws
tab$numtab("savings")
#>        sex        age   vname     uws        ws         pws
#>  1:  Total      Total savings 2273532 136880706 136882379.4
#>  2:  Total age_group1 savings  982386  58893463  58891342.4
#>  3:  Total       ag1a savings  982386  58893463  58891342.4
#>  4:  Total age_group2 savings  552336  33224872  33229680.4
#>  5:  Total       ag2a savings  552336  33224872  33229680.4
#>  6:  Total age_group3 savings  437101  26553122  26554972.4
#>  7:  Total age_group4 savings  214661  12821576  12817603.4
#>  8:  Total age_group5 savings   80451   5024979   5036847.2
#>  9:  Total age_group6 savings    6597    362694    366843.4
#> 10:   male      Total savings 1159816  69509585  69507895.3
#> 11:      m      Total savings 1159816  69509585  69507895.3
#> 12:   male age_group1 savings  517660  31214171  31212487.2
#> 13:      m age_group1 savings  517660  31214171  31212487.2
#> 14:   male       ag1a savings  517660  31214171  31212487.2
#> 15:      m       ag1a savings  517660  31214171  31212487.2
#> 16:   male age_group2 savings  280923  16884564  16886843.3
#> 17:      m age_group2 savings  280923  16884564  16886843.3
#> 18:   male       ag2a savings  280923  16884564  16886843.3
#> 19:      m       ag2a savings  280923  16884564  16886843.3
#> 20:   male age_group3 savings  214970  12534750  12533498.5
#> 21:      m age_group3 savings  214970  12534750  12533498.5
#> 22:   male age_group4 savings   99420   5837760   5837329.7
#> 23:      m age_group4 savings   99420   5837760   5837329.7
#> 24:   male age_group5 savings   43233   2829005   2833021.4
#> 25:      m age_group5 savings   43233   2829005   2833021.4
#> 26:   male age_group6 savings    3610    209335    213965.4
#> 27:      m age_group6 savings    3610    209335    213965.4
#> 28: female      Total savings 1113716  67371121  67369521.1
#> 29:      f      Total savings 1113716  67371121  67369521.1
#> 30: female age_group1 savings  464726  27679292  27687740.8
#> 31:      f age_group1 savings  464726  27679292  27687740.8
#> 32: female       ag1a savings  464726  27679292  27687740.8
#> 33:      f       ag1a savings  464726  27679292  27687740.8
#> 34: female age_group2 savings  271413  16340308  16346175.2
#> 35:      f age_group2 savings  271413  16340308  16346175.2
#> 36: female       ag2a savings  271413  16340308  16346175.2
#> 37:      f       ag2a savings  271413  16340308  16346175.2
#> 38: female age_group3 savings  222131  14018372  14020002.4
#> 39:      f age_group3 savings  222131  14018372  14020002.4
#> 40: female age_group4 savings  115241   6983816   6988153.0
#> 41:      f age_group4 savings  115241   6983816   6988153.0
#> 42: female age_group5 savings   37218   2195974   2190677.8
#> 43:      f age_group5 savings   37218   2195974   2190677.8
#> 44: female age_group6 savings    2987    153359    160998.0
#> 45:      f age_group6 savings    2987    153359    160998.0
#>        sex        age   vname     uws        ws         pws

# results can be resetted, too
tab$reset_cntvars(v = "cnt_males")

# we can then set other parameters and perturb again
tab$params_cnts_set(val = p_cnts1, v = "cnt_males")
#> --> setting perturbation parameters for variable 'cnt_males'

tab$perturb(v = "cnt_males")
#> Count variable 'cnt_males' was perturbed.

# write results to a .csv file
tab$freqtab(
  v = c("total", "cnt_males"),
  path = file.path(tempdir(), "outtab.csv")
)
#> File '/tmp/RtmpV7PINT/outtab.csv' successfully written to disk.
#> NULL

# show results containing weighted and unweighted results
tab$freqtab(v = c("total", "cnt_males"))
#>        sex        age     vname  uwc     wc puwc         pwc
#>  1:  Total      Total     total 4580 275314 4580 275314.0000
#>  2:  Total age_group1     total 1969 118338 1969 118338.0000
#>  3:  Total       ag1a     total 1969 118338 1969 118338.0000
#>  4:  Total age_group2     total 1143  68779 1142  68718.8259
#>  5:  Total       ag2a     total 1143  68779 1142  68718.8259
#>  6:  Total age_group3     total  864  52029  865  52089.2188
#>  7:  Total age_group4     total  423  25161  424  25220.4823
#>  8:  Total age_group5     total  168  10255  168  10255.0000
#>  9:  Total age_group6     total   13    752   13    752.0000
#> 10:   male      Total     total 2296 137457 2298 137576.7361
#> 11:      m      Total     total 2296 137457 2298 137576.7361
#> 12:   male age_group1     total 1015  61151 1014  61090.7527
#> 13:      m age_group1     total 1015  61151 1014  61090.7527
#> 14:   male       ag1a     total 1015  61151 1014  61090.7527
#> 15:      m       ag1a     total 1015  61151 1014  61090.7527
#> 16:   male age_group2     total  571  34403  570  34342.7496
#> 17:      m age_group2     total  571  34403  570  34342.7496
#> 18:   male       ag2a     total  571  34403  570  34342.7496
#> 19:      m       ag2a     total  571  34403  570  34342.7496
#> 20:   male age_group3     total  424  24788  424  24788.0000
#> 21:      m age_group3     total  424  24788  424  24788.0000
#> 22:   male age_group4     total  195  11295  193  11179.1538
#> 23:      m age_group4     total  195  11295  193  11179.1538
#> 24:   male age_group5     total   84   5393   84   5393.0000
#> 25:      m age_group5     total   84   5393   84   5393.0000
#> 26:   male age_group6     total    7    427    8    488.0000
#> 27:      m age_group6     total    7    427    8    488.0000
#> 28: female      Total     total 2284 137857 2284 137857.0000
#> 29:      f      Total     total 2284 137857 2284 137857.0000
#> 30: female age_group1     total  954  57187  953  57127.0556
#> 31:      f age_group1     total  954  57187  953  57127.0556
#> 32: female       ag1a     total  954  57187  953  57127.0556
#> 33:      f       ag1a     total  954  57187  953  57127.0556
#> 34: female age_group2     total  572  34376  571  34315.9021
#> 35:      f age_group2     total  572  34376  571  34315.9021
#> 36: female       ag2a     total  572  34376  571  34315.9021
#> 37:      f       ag2a     total  572  34376  571  34315.9021
#> 38: female age_group3     total  440  27241  439  27179.0886
#> 39:      f age_group3     total  440  27241  439  27179.0886
#> 40: female age_group4     total  228  13866  229  13926.8158
#> 41:      f age_group4     total  228  13866  229  13926.8158
#> 42: female age_group5     total   84   4862   83   4804.1190
#> 43:      f age_group5     total   84   4862   83   4804.1190
#> 44: female age_group6     total    6    325    7    379.1667
#> 45:      f age_group6     total    6    325    7    379.1667
#> 46:  Total      Total cnt_males 2296 137457 2298 137576.7361
#> 47:  Total age_group1 cnt_males 1015  61151 1014  61090.7527
#> 48:  Total       ag1a cnt_males 1015  61151 1014  61090.7527
#> 49:  Total age_group2 cnt_males  571  34403  570  34342.7496
#> 50:  Total       ag2a cnt_males  571  34403  570  34342.7496
#> 51:  Total age_group3 cnt_males  424  24788  424  24788.0000
#> 52:  Total age_group4 cnt_males  195  11295  193  11179.1538
#> 53:  Total age_group5 cnt_males   84   5393   84   5393.0000
#> 54:  Total age_group6 cnt_males    7    427    8    488.0000
#> 55:   male      Total cnt_males 2296 137457 2298 137576.7361
#> 56:      m      Total cnt_males 2296 137457 2298 137576.7361
#> 57:   male age_group1 cnt_males 1015  61151 1014  61090.7527
#> 58:      m age_group1 cnt_males 1015  61151 1014  61090.7527
#> 59:   male       ag1a cnt_males 1015  61151 1014  61090.7527
#> 60:      m       ag1a cnt_males 1015  61151 1014  61090.7527
#> 61:   male age_group2 cnt_males  571  34403  570  34342.7496
#> 62:      m age_group2 cnt_males  571  34403  570  34342.7496
#> 63:   male       ag2a cnt_males  571  34403  570  34342.7496
#> 64:      m       ag2a cnt_males  571  34403  570  34342.7496
#> 65:   male age_group3 cnt_males  424  24788  424  24788.0000
#> 66:      m age_group3 cnt_males  424  24788  424  24788.0000
#> 67:   male age_group4 cnt_males  195  11295  193  11179.1538
#> 68:      m age_group4 cnt_males  195  11295  193  11179.1538
#> 69:   male age_group5 cnt_males   84   5393   84   5393.0000
#> 70:      m age_group5 cnt_males   84   5393   84   5393.0000
#> 71:   male age_group6 cnt_males    7    427    8    488.0000
#> 72:      m age_group6 cnt_males    7    427    8    488.0000
#> 73: female      Total cnt_males    0      0    0      0.0000
#> 74:      f      Total cnt_males    0      0    0      0.0000
#> 75: female age_group1 cnt_males    0      0    0      0.0000
#> 76:      f age_group1 cnt_males    0      0    0      0.0000
#> 77: female       ag1a cnt_males    0      0    0      0.0000
#> 78:      f       ag1a cnt_males    0      0    0      0.0000
#> 79: female age_group2 cnt_males    0      0    0      0.0000
#> 80:      f age_group2 cnt_males    0      0    0      0.0000
#> 81: female       ag2a cnt_males    0      0    0      0.0000
#> 82:      f       ag2a cnt_males    0      0    0      0.0000
#> 83: female age_group3 cnt_males    0      0    0      0.0000
#> 84:      f age_group3 cnt_males    0      0    0      0.0000
#> 85: female age_group4 cnt_males    0      0    0      0.0000
#> 86:      f age_group4 cnt_males    0      0    0      0.0000
#> 87: female age_group5 cnt_males    0      0    0      0.0000
#> 88:      f age_group5 cnt_males    0      0    0      0.0000
#> 89: female age_group6 cnt_males    0      0    0      0.0000
#> 90:      f age_group6 cnt_males    0      0    0      0.0000
#>        sex        age     vname  uwc     wc puwc         pwc

# utility measures for a count variable
tab$measures_cnts(v = "total", exclude_zeros = TRUE)
#> $overview
#>    noise cnt        pct
#> 1:    -2   2 0.04444444
#> 2:    -1   8 0.17777778
#> 3:     0  11 0.24444444
#> 4:     1  22 0.48888889
#> 5:     2   2 0.04444444
#> 
#> $measures
#>       what    d1    d2    d3
#>  1:    Min 0.000 0.000 0.000
#>  2:    Q10 0.000 0.000 0.000
#>  3:    Q20 0.000 0.000 0.000
#>  4:    Q30 1.000 0.001 0.016
#>  5:    Q40 1.000 0.001 0.016
#>  6:   Mean 0.844 0.016 0.034
#>  7: Median 1.000 0.001 0.021
#>  8:    Q60 1.000 0.002 0.021
#>  9:    Q70 1.000 0.002 0.021
#> 10:    Q80 1.000 0.004 0.033
#> 11:    Q90 1.000 0.012 0.072
#> 12:    Q95 2.000 0.143 0.183
#> 13:    Q99 2.000 0.167 0.196
#> 14:    Max 2.000 0.167 0.196
#> 
#> $cumdistr_d1
#>    cat cnt       pct
#> 1:   0  11 0.2444444
#> 2:   1  41 0.9111111
#> 3:   2  45 1.0000000
#> 
#> $cumdistr_d2
#>            cat cnt       pct
#> 1:    [0,0.02]  41 0.9111111
#> 2: (0.02,0.05]  41 0.9111111
#> 3:  (0.05,0.1]  41 0.9111111
#> 4:   (0.1,0.2]  45 1.0000000
#> 5:   (0.2,0.3]  45 1.0000000
#> 6:   (0.3,0.4]  45 1.0000000
#> 7:   (0.4,0.5]  45 1.0000000
#> 8:   (0.5,Inf]  45 1.0000000
#> 
#> $cumdistr_d3
#>            cat cnt       pct
#> 1:    [0,0.02]  22 0.4888889
#> 2: (0.02,0.05]  37 0.8222222
#> 3:  (0.05,0.1]  41 0.9111111
#> 4:   (0.1,0.2]  45 1.0000000
#> 5:   (0.2,0.3]  45 1.0000000
#> 6:   (0.3,0.4]  45 1.0000000
#> 7:   (0.4,0.5]  45 1.0000000
#> 8:   (0.5,Inf]  45 1.0000000
#> 
#> $false_zero
#> [1] 0
#> 
#> $false_nonzero
#> [1] 0
#> 
#> $exclude_zeros
#> [1] TRUE
#> 

# modifications for perturbed count variables
tab$mod_cnts()
#>         sex        age row_nr pert      ckey  countvar
#>   1:  Total      Total     15    0 0.3252413     total
#>   2:  Total age_group1     15    0 0.4125616     total
#>   3:  Total       ag1a     15    0 0.4125616     total
#>   4:  Total age_group2     14   -1 0.1858044     total
#>   5:  Total       ag2a     14   -1 0.1858044     total
#>  ---                                                  
#> 131:      f age_group4     -1    0 0.0000000 cnt_males
#> 132: female age_group5     -1    0 0.0000000 cnt_males
#> 133:      f age_group5     -1    0 0.0000000 cnt_males
#> 134: female age_group6     -1    0 0.0000000 cnt_males
#> 135:      f age_group6     -1    0 0.0000000 cnt_males

# display a summary about utility measures
tab$summary()
#> ┌──────────────────────────────────────────────┐
#> │Utility measures for perturbed count variables│
#> └──────────────────────────────────────────────┘
#> ── Distribution statistics of perturbations ────────────────────────────────────
#>          countvar Min Q10 Q20  Q30 Q40   Mean Median Q60 Q70 Q80 Q90 Q95 Q99
#> 1:          total  -2  -1  -1 -1.0  -1 -0.311     -1   0   0   1   1 1.0   2
#> 2: cnt_highincome  -3  -3  -2 -1.8  -1 -0.289     -1   0   0   2   3 4.0   4
#> 3:      cnt_males  -2  -1  -1 -1.0   0 -0.200      0   0   0   0   1 1.8   2
#>    Max
#> 1:   2
#> 2:   4
#> 3:   2
#> 
#> ── Distance-based measures ─────────────────────────────────────────────────────
#> ✔ Variable: 'total'
#> 
#>       what    d1    d2    d3
#>  1:    Min 0.000 0.000 0.000
#>  2:    Q10 0.000 0.000 0.000
#>  3:    Q20 0.000 0.000 0.000
#>  4:    Q30 1.000 0.001 0.016
#>  5:    Q40 1.000 0.001 0.016
#>  6:   Mean 0.844 0.016 0.034
#>  7: Median 1.000 0.001 0.021
#>  8:    Q60 1.000 0.002 0.021
#>  9:    Q70 1.000 0.002 0.021
#> 10:    Q80 1.000 0.004 0.033
#> 11:    Q90 1.000 0.012 0.072
#> 12:    Q95 2.000 0.143 0.183
#> 13:    Q99 2.000 0.167 0.196
#> 14:    Max 2.000 0.167 0.196
#> 
#> ✔ Variable: 'cnt_males'
#> 
#>       what  d1    d2    d3
#>  1:    Min 0.0 0.000 0.000
#>  2:    Q10 0.0 0.000 0.000
#>  3:    Q20 0.2 0.000 0.003
#>  4:    Q30 1.0 0.001 0.016
#>  5:    Q40 1.0 0.001 0.016
#>  6:   Mean 1.0 0.018 0.039
#>  7: Median 1.0 0.001 0.021
#>  8:    Q60 1.0 0.002 0.021
#>  9:    Q70 1.0 0.002 0.021
#> 10:    Q80 1.8 0.009 0.062
#> 11:    Q90 2.0 0.063 0.116
#> 12:    Q95 2.0 0.143 0.183
#> 13:    Q99 2.0 0.143 0.183
#> 14:    Max 2.0 0.143 0.183
#> 
#> ✔ Variable: 'cnt_highincome'
#> 
#>       what    d1    d2    d3
#>  1:    Min 0.000 0.000 0.000
#>  2:    Q10 1.000 0.005 0.036
#>  3:    Q20 1.000 0.011 0.053
#>  4:    Q30 1.000 0.015 0.091
#>  5:    Q40 2.000 0.029 0.116
#>  6:   Mean 2.075 0.057 0.151
#>  7: Median 2.000 0.035 0.134
#>  8:    Q60 2.000 0.041 0.150
#>  9:    Q70 3.000 0.055 0.170
#> 10:    Q80 3.000 0.063 0.239
#> 11:    Q90 3.100 0.149 0.254
#> 12:    Q95 4.000 0.204 0.357
#> 13:    Q99 4.000 0.286 0.409
#> 14:    Max 4.000 0.286 0.409
#> 
#> ┌──────────────────────────────────────────────────┐
#> │Utility measures for perturbed numerical variables│
#> └──────────────────────────────────────────────────┘
#> ── Distribution statistics of perturbations ────────────────────────────────────
#> Warning: no non-missing arguments to min; returning Inf
#> Warning: no non-missing arguments to max; returning -Inf
#> Warning: no non-missing arguments to min; returning Inf
#> Warning: no non-missing arguments to max; returning -Inf
#>      vname        Min        Q10        Q20       Q30       Q40      Mean
#> 1:  expend        Inf         NA         NA        NA        NA       NaN
#> 2:  income -70900.468 -47321.762 -40780.843 -8675.895 -2952.858 13369.314
#> 3: savings  -5296.212  -1948.211  -1683.762 -1251.550  1630.368  2323.595
#> 4:   mixed        Inf         NA         NA        NA        NA       NaN
#>       Median       Q60       Q70       Q80      Q90       Q95       Q99
#> 1:        NA        NA        NA        NA       NA        NA        NA
#> 2: 15008.297 31281.306 36855.631 39984.565 86680.04 98328.793 121965.95
#> 3:  2279.252  4069.622  4630.368  5867.219  8124.92  8448.834  10363.69
#> 4:        NA        NA        NA        NA       NA        NA        NA
#>          Max
#> 1:      -Inf
#> 2: 121965.95
#> 3:  11868.22
#> 4:      -Inf
# }