R/ck_params_nums.R
ck_flexparams.Rd
ck_flexparams()
allows to define a flex function that is used to lookup perturbation
magnitudes (percentages) used when perturbing continuous variables.
ck_flexparams(fp, p = c(0.25, 0.05), epsilon = 1, q = 3)
(numeric scalar); at which point should the noise coefficient
function reaches its desired maximum (defined by the first element of p
)
a numeric vector of length 2
where both elements specify a percentage.
The first value refers to the desired maximum perturbation percentage for small
cells (depending on fp
) while the second element refers to the desired maximum
perturbation percentage for large cells. Both values must be between 0
and 1
and
need to be in descending order.
a numeric vector in descending order with all values >= 0
and <= 1
with the first
element forced to equal 1. The length of this vector must correspond with the number top_k
specified in ck_params_nums()
when creating parameters for type == "top_contr"
which is
checked at runtime. This setting allows to use different flex-functions for the largest top_k
contributors.
(numeric scalar); Parameter of the function; q
needs to be >= 1
an object suitable as input for ck_params_nums()
.
details about the flex function can be found in Deliverable D4.2, Part I in SGA "Open Source tools for perturbative confidentiality methods"
# \donttest{
x <- ck_create_testdata()
# create some 0/1 variables that should be perturbed later
x[, cnt_females := ifelse(sex == "male", 0, 1)]
#> urbrur roof walls water electcon relat sex age hhcivil expend
#> 1: 2 4 3 3 1 1 male age_group3 2 9093
#> 2: 2 4 3 3 1 2 female age_group3 2 2734
#> 3: 2 4 3 3 1 3 male age_group1 1 2652
#> 4: 2 4 3 3 1 3 male age_group1 1 1807
#> 5: 2 4 2 3 1 1 male age_group4 2 671
#> ---
#> 4576: 2 4 3 4 1 2 female age_group3 2 3696
#> 4577: 2 4 3 4 1 3 male age_group1 1 282
#> 4578: 2 4 3 4 1 3 male age_group1 1 840
#> 4579: 2 4 3 4 1 3 female age_group1 1 6258
#> 4580: 2 4 3 4 1 3 male age_group1 1 7019
#> income savings ori_hid sampling_weight household_weights cnt_females
#> 1: 5780 12 1 96 25.00000 0
#> 2: 2530 28 1 75 25.00000 1
#> 3: 6920 550 1 68 25.00000 0
#> 4: 7960 870 1 29 25.00000 0
#> 5: 9030 20 2 34 16.66667 0
#> ---
#> 4576: 7900 278 1000 93 16.66667 1
#> 4577: 1420 987 1000 62 16.66667 0
#> 4578: 8900 684 1000 60 16.66667 0
#> 4579: 3880 294 1000 26 16.66667 1
#> 4580: 4830 911 1000 64 16.66667 0
x[, cnt_males := ifelse(sex == "male", 1, 0)]
#> urbrur roof walls water electcon relat sex age hhcivil expend
#> 1: 2 4 3 3 1 1 male age_group3 2 9093
#> 2: 2 4 3 3 1 2 female age_group3 2 2734
#> 3: 2 4 3 3 1 3 male age_group1 1 2652
#> 4: 2 4 3 3 1 3 male age_group1 1 1807
#> 5: 2 4 2 3 1 1 male age_group4 2 671
#> ---
#> 4576: 2 4 3 4 1 2 female age_group3 2 3696
#> 4577: 2 4 3 4 1 3 male age_group1 1 282
#> 4578: 2 4 3 4 1 3 male age_group1 1 840
#> 4579: 2 4 3 4 1 3 female age_group1 1 6258
#> 4580: 2 4 3 4 1 3 male age_group1 1 7019
#> income savings ori_hid sampling_weight household_weights cnt_females
#> 1: 5780 12 1 96 25.00000 0
#> 2: 2530 28 1 75 25.00000 1
#> 3: 6920 550 1 68 25.00000 0
#> 4: 7960 870 1 29 25.00000 0
#> 5: 9030 20 2 34 16.66667 0
#> ---
#> 4576: 7900 278 1000 93 16.66667 1
#> 4577: 1420 987 1000 62 16.66667 0
#> 4578: 8900 684 1000 60 16.66667 0
#> 4579: 3880 294 1000 26 16.66667 1
#> 4580: 4830 911 1000 64 16.66667 0
#> cnt_males
#> 1: 1
#> 2: 0
#> 3: 1
#> 4: 1
#> 5: 1
#> ---
#> 4576: 0
#> 4577: 1
#> 4578: 1
#> 4579: 0
#> 4580: 1
x[, cnt_highincome := ifelse(income >= 9000, 1, 0)]
#> urbrur roof walls water electcon relat sex age hhcivil expend
#> 1: 2 4 3 3 1 1 male age_group3 2 9093
#> 2: 2 4 3 3 1 2 female age_group3 2 2734
#> 3: 2 4 3 3 1 3 male age_group1 1 2652
#> 4: 2 4 3 3 1 3 male age_group1 1 1807
#> 5: 2 4 2 3 1 1 male age_group4 2 671
#> ---
#> 4576: 2 4 3 4 1 2 female age_group3 2 3696
#> 4577: 2 4 3 4 1 3 male age_group1 1 282
#> 4578: 2 4 3 4 1 3 male age_group1 1 840
#> 4579: 2 4 3 4 1 3 female age_group1 1 6258
#> 4580: 2 4 3 4 1 3 male age_group1 1 7019
#> income savings ori_hid sampling_weight household_weights cnt_females
#> 1: 5780 12 1 96 25.00000 0
#> 2: 2530 28 1 75 25.00000 1
#> 3: 6920 550 1 68 25.00000 0
#> 4: 7960 870 1 29 25.00000 0
#> 5: 9030 20 2 34 16.66667 0
#> ---
#> 4576: 7900 278 1000 93 16.66667 1
#> 4577: 1420 987 1000 62 16.66667 0
#> 4578: 8900 684 1000 60 16.66667 0
#> 4579: 3880 294 1000 26 16.66667 1
#> 4580: 4830 911 1000 64 16.66667 0
#> cnt_males cnt_highincome
#> 1: 1 0
#> 2: 0 0
#> 3: 1 0
#> 4: 1 0
#> 5: 1 1
#> ---
#> 4576: 0 0
#> 4577: 1 0
#> 4578: 1 0
#> 4579: 0 0
#> 4580: 1 0
# a variable with positive and negative contributions
x[, mixed := sample(-10:10, nrow(x), replace = TRUE)]
#> urbrur roof walls water electcon relat sex age hhcivil expend
#> 1: 2 4 3 3 1 1 male age_group3 2 9093
#> 2: 2 4 3 3 1 2 female age_group3 2 2734
#> 3: 2 4 3 3 1 3 male age_group1 1 2652
#> 4: 2 4 3 3 1 3 male age_group1 1 1807
#> 5: 2 4 2 3 1 1 male age_group4 2 671
#> ---
#> 4576: 2 4 3 4 1 2 female age_group3 2 3696
#> 4577: 2 4 3 4 1 3 male age_group1 1 282
#> 4578: 2 4 3 4 1 3 male age_group1 1 840
#> 4579: 2 4 3 4 1 3 female age_group1 1 6258
#> 4580: 2 4 3 4 1 3 male age_group1 1 7019
#> income savings ori_hid sampling_weight household_weights cnt_females
#> 1: 5780 12 1 96 25.00000 0
#> 2: 2530 28 1 75 25.00000 1
#> 3: 6920 550 1 68 25.00000 0
#> 4: 7960 870 1 29 25.00000 0
#> 5: 9030 20 2 34 16.66667 0
#> ---
#> 4576: 7900 278 1000 93 16.66667 1
#> 4577: 1420 987 1000 62 16.66667 0
#> 4578: 8900 684 1000 60 16.66667 0
#> 4579: 3880 294 1000 26 16.66667 1
#> 4580: 4830 911 1000 64 16.66667 0
#> cnt_males cnt_highincome mixed
#> 1: 1 0 -9
#> 2: 0 0 2
#> 3: 1 0 -5
#> 4: 1 0 -2
#> 5: 1 1 10
#> ---
#> 4576: 0 0 -3
#> 4577: 1 0 3
#> 4578: 1 0 -3
#> 4579: 0 0 -7
#> 4580: 1 0 0
# create record keys
x$rkey <- ck_generate_rkeys(dat = x)
# define required inputs
# hierarchy with some bogus codes
d_sex <- hier_create(root = "Total", nodes = c("male", "female"))
d_sex <- hier_add(d_sex, root = "female", "f")
d_sex <- hier_add(d_sex, root = "male", "m")
d_age <- hier_create(root = "Total", nodes = paste0("age_group", 1:6))
d_age <- hier_add(d_age, root = "age_group1", "ag1a")
d_age <- hier_add(d_age, root = "age_group2", "ag2a")
# define the cell key object
countvars <- c("cnt_females", "cnt_males", "cnt_highincome")
numvars <- c("expend", "income", "savings", "mixed")
tab <- ck_setup(
x = x,
rkey = "rkey",
dims = list(sex = d_sex, age = d_age),
w = "sampling_weight",
countvars = countvars,
numvars = numvars)
#> computing contributing indices | rawdata <--> table; this might take a while
# show some information about this table instance
tab$print() # identical with print(tab)
#> ── Table Information ───────────────────────────────────────────────────────────
#> ✔ 45 cells in 2 dimensions ('sex', 'age')
#> ✔ weights: yes
#> ── Tabulated / Perturbed countvars ─────────────────────────────────────────────
#> ☐ 'total'
#> ☐ 'cnt_females'
#> ☐ 'cnt_males'
#> ☐ 'cnt_highincome'
#> ── Tabulated / Perturbed numvars ───────────────────────────────────────────────
#> ☐ 'expend'
#> ☐ 'income'
#> ☐ 'savings'
#> ☐ 'mixed'
# information about the hierarchies
tab$hierarchy_info()
#> $sex
#> code level is_leaf parent
#> 1: Total 1 FALSE Total
#> 2: male 2 FALSE Total
#> 3: m 3 TRUE male
#> 4: female 2 FALSE Total
#> 5: f 3 TRUE female
#>
#> $age
#> code level is_leaf parent
#> 1: Total 1 FALSE Total
#> 2: age_group1 2 FALSE Total
#> 3: ag1a 3 TRUE age_group1
#> 4: age_group2 2 FALSE Total
#> 5: ag2a 3 TRUE age_group2
#> 6: age_group3 2 TRUE Total
#> 7: age_group4 2 TRUE Total
#> 8: age_group5 2 TRUE Total
#> 9: age_group6 2 TRUE Total
#>
# which variables have been defined?
tab$allvars()
#> $cntvars
#> [1] "total" "cnt_females" "cnt_males" "cnt_highincome"
#>
#> $numvars
#> [1] "expend" "income" "savings" "mixed"
#>
# count variables
tab$cntvars()
#> [1] "total" "cnt_females" "cnt_males" "cnt_highincome"
# continuous variables
tab$numvars()
#> [1] "expend" "income" "savings" "mixed"
# create perturbation parameters for "total" variable and
# write to yaml-file
# create a ptable using functionality from the ptable-pkg
f_yaml <- tempfile(fileext = ".yaml")
p_cnts1 <- ck_params_cnts(
ptab = ptable::pt_ex_cnts(),
path = f_yaml)
#> yaml configuration '/tmp/RtmpV7PINT/file19623d81aba1.yaml' successfully written.
# read parameters from yaml-file and set them for variable `"total"`
p_cnts1 <- ck_read_yaml(path = f_yaml)
tab$params_cnts_set(val = p_cnts1, v = "total")
#> --> setting perturbation parameters for variable 'total'
# create alternative perturbation parameters by specifying parameters
para2 <- ptable::create_cnt_ptable(
D = 8, V = 3, js = 2, create = FALSE)
p_cnts2 <- ck_params_cnts(ptab = para2)
# use these ptable it for the remaining variables
tab$params_cnts_set(val = p_cnts2, v = countvars)
#> --> setting perturbation parameters for variable 'cnt_females'
#> --> setting perturbation parameters for variable 'cnt_males'
#> --> setting perturbation parameters for variable 'cnt_highincome'
# perturb a variable
tab$perturb(v = "total")
#> Count variable 'total' was perturbed.
# multiple variables can be perturbed as well
tab$perturb(v = c("cnt_males", "cnt_highincome"))
#> Count variable 'cnt_males' was perturbed.
#> Count variable 'cnt_highincome' was perturbed.
# return weighted and unweighted results
tab$freqtab(v = c("total", "cnt_males"))
#> sex age vname uwc wc puwc pwc
#> 1: Total Total total 4580 271794 4580 271794.0000
#> 2: Total age_group1 total 1969 115924 1971 116041.7491
#> 3: Total ag1a total 1969 115924 1971 116041.7491
#> 4: Total age_group2 total 1143 68184 1144 68243.6535
#> 5: Total ag2a total 1143 68184 1144 68243.6535
#> 6: Total age_group3 total 864 52054 866 52174.4954
#> 7: Total age_group4 total 423 24571 423 24571.0000
#> 8: Total age_group5 total 168 10321 169 10382.4345
#> 9: Total age_group6 total 13 740 12 683.0769
#> 10: male Total total 2296 135847 2298 135965.3336
#> 11: m Total total 2296 135847 2298 135965.3336
#> 12: male age_group1 total 1015 59743 1016 59801.8601
#> 13: m age_group1 total 1015 59743 1016 59801.8601
#> 14: male ag1a total 1015 59743 1016 59801.8601
#> 15: m ag1a total 1015 59743 1016 59801.8601
#> 16: male age_group2 total 571 33900 571 33900.0000
#> 17: m age_group2 total 571 33900 571 33900.0000
#> 18: male ag2a total 571 33900 571 33900.0000
#> 19: m ag2a total 571 33900 571 33900.0000
#> 20: male age_group3 total 424 25549 425 25609.2571
#> 21: m age_group3 total 424 25549 425 25609.2571
#> 22: male age_group4 total 195 11317 194 11258.9641
#> 23: m age_group4 total 195 11317 194 11258.9641
#> 24: male age_group5 total 84 4958 84 4958.0000
#> 25: m age_group5 total 84 4958 84 4958.0000
#> 26: male age_group6 total 7 380 6 325.7143
#> 27: m age_group6 total 7 380 6 325.7143
#> 28: female Total total 2284 135947 2284 135947.0000
#> 29: f Total total 2284 135947 2284 135947.0000
#> 30: female age_group1 total 954 56181 953 56122.1101
#> 31: f age_group1 total 954 56181 953 56122.1101
#> 32: female ag1a total 954 56181 953 56122.1101
#> 33: f ag1a total 954 56181 953 56122.1101
#> 34: female age_group2 total 572 34284 572 34284.0000
#> 35: f age_group2 total 572 34284 572 34284.0000
#> 36: female ag2a total 572 34284 572 34284.0000
#> 37: f ag2a total 572 34284 572 34284.0000
#> 38: female age_group3 total 440 26505 439 26444.7614
#> 39: f age_group3 total 440 26505 439 26444.7614
#> 40: female age_group4 total 228 13254 227 13195.8684
#> 41: f age_group4 total 228 13254 227 13195.8684
#> 42: female age_group5 total 84 5363 84 5363.0000
#> 43: f age_group5 total 84 5363 84 5363.0000
#> 44: female age_group6 total 6 360 5 300.0000
#> 45: f age_group6 total 6 360 5 300.0000
#> 46: Total Total cnt_males 2296 135847 2300 136083.6672
#> 47: Total age_group1 cnt_males 1015 59743 1016 59801.8601
#> 48: Total ag1a cnt_males 1015 59743 1016 59801.8601
#> 49: Total age_group2 cnt_males 571 33900 571 33900.0000
#> 50: Total ag2a cnt_males 571 33900 571 33900.0000
#> 51: Total age_group3 cnt_males 424 25549 426 25669.5142
#> 52: Total age_group4 cnt_males 195 11317 194 11258.9641
#> 53: Total age_group5 cnt_males 84 4958 84 4958.0000
#> 54: Total age_group6 cnt_males 7 380 5 271.4286
#> 55: male Total cnt_males 2296 135847 2300 136083.6672
#> 56: m Total cnt_males 2296 135847 2300 136083.6672
#> 57: male age_group1 cnt_males 1015 59743 1016 59801.8601
#> 58: m age_group1 cnt_males 1015 59743 1016 59801.8601
#> 59: male ag1a cnt_males 1015 59743 1016 59801.8601
#> 60: m ag1a cnt_males 1015 59743 1016 59801.8601
#> 61: male age_group2 cnt_males 571 33900 571 33900.0000
#> 62: m age_group2 cnt_males 571 33900 571 33900.0000
#> 63: male ag2a cnt_males 571 33900 571 33900.0000
#> 64: m ag2a cnt_males 571 33900 571 33900.0000
#> 65: male age_group3 cnt_males 424 25549 426 25669.5142
#> 66: m age_group3 cnt_males 424 25549 426 25669.5142
#> 67: male age_group4 cnt_males 195 11317 194 11258.9641
#> 68: m age_group4 cnt_males 195 11317 194 11258.9641
#> 69: male age_group5 cnt_males 84 4958 84 4958.0000
#> 70: m age_group5 cnt_males 84 4958 84 4958.0000
#> 71: male age_group6 cnt_males 7 380 5 271.4286
#> 72: m age_group6 cnt_males 7 380 5 271.4286
#> 73: female Total cnt_males 0 0 0 0.0000
#> 74: f Total cnt_males 0 0 0 0.0000
#> 75: female age_group1 cnt_males 0 0 0 0.0000
#> 76: f age_group1 cnt_males 0 0 0 0.0000
#> 77: female ag1a cnt_males 0 0 0 0.0000
#> 78: f ag1a cnt_males 0 0 0 0.0000
#> 79: female age_group2 cnt_males 0 0 0 0.0000
#> 80: f age_group2 cnt_males 0 0 0 0.0000
#> 81: female ag2a cnt_males 0 0 0 0.0000
#> 82: f ag2a cnt_males 0 0 0 0.0000
#> 83: female age_group3 cnt_males 0 0 0 0.0000
#> 84: f age_group3 cnt_males 0 0 0 0.0000
#> 85: female age_group4 cnt_males 0 0 0 0.0000
#> 86: f age_group4 cnt_males 0 0 0 0.0000
#> 87: female age_group5 cnt_males 0 0 0 0.0000
#> 88: f age_group5 cnt_males 0 0 0 0.0000
#> 89: female age_group6 cnt_males 0 0 0 0.0000
#> 90: f age_group6 cnt_males 0 0 0 0.0000
#> sex age vname uwc wc puwc pwc
# numerical variables (positive variables using flex-function)
# we also write the config to a yaml file
f_yaml <- tempfile(fileext = ".yaml")
# create a ptable using functionality from the ptable-pkg
# a single ptable for all cells
ptab1 <- ptable::pt_ex_nums(parity = TRUE, separation = FALSE)
# a single ptab for all cells except for very small ones
ptab2 <- ptable::pt_ex_nums(parity = TRUE, separation = TRUE)
# different ptables for cells with even/odd number of contributors
# and very small cells
ptab3 <- ptable::pt_ex_nums(parity = FALSE, separation = TRUE)
p_nums1 <- ck_params_nums(
ptab = ptab1,
type = "top_contr",
top_k = 3,
mult_params = ck_flexparams(
fp = 1000,
p = c(0.30, 0.03),
epsilon = c(1, 0.5, 0.2),
q = 3),
mu_c = 2,
same_key = FALSE,
use_zero_rkeys = FALSE,
path = f_yaml)
#> yaml configuration '/tmp/RtmpV7PINT/file196210088919.yaml' successfully written.
# we read the parameters from the yaml-file
p_nums1 <- ck_read_yaml(path = f_yaml)
# for variables with positive and negative values
p_nums2 <- ck_params_nums(
ptab = ptab2,
type = "top_contr",
top_k = 3,
mult_params = ck_flexparams(
fp = 1000,
p = c(0.15, 0.02),
epsilon = c(1, 0.4, 0.15),
q = 3),
mu_c = 2,
same_key = FALSE)
# simple perturbation parameters (not using the flex-function approach)
p_nums3 <- ck_params_nums(
ptab = ptab3,
type = "mean",
mult_params = ck_simpleparams(p = 0.25),
mu_c = 2,
same_key = FALSE)
# use `p_nums1` for all variables
tab$params_nums_set(p_nums1, c("savings", "income", "expend"))
#> --> setting perturbation parameters for variable 'savings'
#> --> setting perturbation parameters for variable 'income'
#> --> setting perturbation parameters for variable 'expend'
# use different parameters for variable `mixed`
tab$params_nums_set(p_nums2, v = "mixed")
#> --> setting perturbation parameters for variable 'mixed'
# identify sensitive cells to which extra protection (`mu_c`) is added.
tab$supp_p(v = "income", p = 85)
#> computing contributing indices | rawdata <--> table; this might take a while
#> p%-rule: 0 new sensitive cells (incl. duplicates) found (total: 0)
tab$supp_pq(v = "income", p = 85, q = 90)
#> computing contributing indices | rawdata <--> table; this might take a while
#> pq-rule: 0 new sensitive cells (incl. duplicates) found (total: 0)
tab$supp_nk(v = "income", n = 2, k = 90)
#> computing contributing indices | rawdata <--> table; this might take a while
#> nk-rule: 0 new sensitive cells (incl. duplicates) found (total: 0)
tab$supp_freq(v = "income", n = 14, weighted = FALSE)
#> freq-rule: 5 new sensitive cells (incl. duplicates) found (total: 5)
tab$supp_val(v = "income", n = 10000, weighted = TRUE)
#> val-rule: 0 new sensitive cells (incl. duplicates) found (total: 5)
tab$supp_cells(
v = "income",
inp = data.frame(
sex = c("female", "female"),
"age" = c("age_group1", "age_group3")
)
)
#> cell-rule: 2 new sensitive cells (incl. duplicates) found (total: 7)
# perturb variables
tab$perturb(v = c("income", "savings"))
#> Numeric variable 'income' was perturbed.
#> Numeric variable 'savings' was perturbed.
# extract results
tab$numtab("income", mean_before_sum = TRUE)
#> sex age vname uws ws pws
#> 1: Total Total income 22952978 1362164655 1362309587
#> 2: Total age_group1 income 9810547 576139868 576201080
#> 3: Total ag1a income 9810547 576139868 576201080
#> 4: Total age_group2 income 5692119 339190840 339210606
#> 5: Total ag2a income 5692119 339190840 339210606
#> 6: Total age_group3 income 4406946 266009840 265934534
#> 7: Total age_group4 income 2133543 124517758 124388087
#> 8: Total age_group5 income 848151 52502198 52538133
#> 9: Total age_group6 income 61672 3804151 3997489
#> 10: male Total income 11262049 669230647 669162762
#> 11: m Total income 11262049 669230647 669162762
#> 12: male age_group1 income 4877164 287875791 287821837
#> 13: m age_group1 income 4877164 287875791 287821837
#> 14: male ag1a income 4877164 287875791 287821837
#> 15: m ag1a income 4877164 287875791 287821837
#> 16: male age_group2 income 2811379 167710504 167779242
#> 17: m age_group2 income 2811379 167710504 167779242
#> 18: male ag2a income 2811379 167710504 167779242
#> 19: m ag2a income 2811379 167710504 167779242
#> 20: male age_group3 income 2168169 130878177 130799853
#> 21: m age_group3 income 2168169 130878177 130799853
#> 22: male age_group4 income 978510 57071677 56976920
#> 23: m age_group4 income 978510 57071677 56976920
#> 24: male age_group5 income 393134 23652582 23252574
#> 25: m age_group5 income 393134 23652582 23252574
#> 26: male age_group6 income 33693 2041916 2180102
#> 27: m age_group6 income 33693 2041916 2180102
#> 28: female Total income 11690929 692934008 693064101
#> 29: f Total income 11690929 692934008 693064101
#> 30: female age_group1 income 4933383 288264077 288175524
#> 31: f age_group1 income 4933383 288264077 288175524
#> 32: female ag1a income 4933383 288264077 288175524
#> 33: f ag1a income 4933383 288264077 288175524
#> 34: female age_group2 income 2880740 171480336 171525493
#> 35: f age_group2 income 2880740 171480336 171525493
#> 36: female ag2a income 2880740 171480336 171525493
#> 37: f ag2a income 2880740 171480336 171525493
#> 38: female age_group3 income 2238777 135131663 135018748
#> 39: f age_group3 income 2238777 135131663 135018748
#> 40: female age_group4 income 1155033 67446081 67447018
#> 41: f age_group4 income 1155033 67446081 67447018
#> 42: female age_group5 income 455017 28849616 28870115
#> 43: f age_group5 income 455017 28849616 28870115
#> 44: female age_group6 income 27979 1762235 1572808
#> 45: f age_group6 income 27979 1762235 1572808
#> sex age vname uws ws pws
tab$numtab("income", mean_before_sum = FALSE)
#> sex age vname uws ws pws
#> 1: Total Total income 22952978 1362164655 1362237119
#> 2: Total age_group1 income 9810547 576139868 576170473
#> 3: Total ag1a income 9810547 576139868 576170473
#> 4: Total age_group2 income 5692119 339190840 339200723
#> 5: Total ag2a income 5692119 339190840 339200723
#> 6: Total age_group3 income 4406946 266009840 265972184
#> 7: Total age_group4 income 2133543 124517758 124452906
#> 8: Total age_group5 income 848151 52502198 52520162
#> 9: Total age_group6 income 61672 3804151 3899622
#> 10: male Total income 11262049 669230647 669196704
#> 11: m Total income 11262049 669230647 669196704
#> 12: male age_group1 income 4877164 287875791 287848813
#> 13: m age_group1 income 4877164 287875791 287848813
#> 14: male ag1a income 4877164 287875791 287848813
#> 15: m ag1a income 4877164 287875791 287848813
#> 16: male age_group2 income 2811379 167710504 167744869
#> 17: m age_group2 income 2811379 167710504 167744869
#> 18: male ag2a income 2811379 167710504 167744869
#> 19: m ag2a income 2811379 167710504 167744869
#> 20: male age_group3 income 2168169 130878177 130839009
#> 21: m age_group3 income 2168169 130878177 130839009
#> 22: male age_group4 income 978510 57071677 57024279
#> 23: m age_group4 income 978510 57071677 57024279
#> 24: male age_group5 income 393134 23652582 23451725
#> 25: m age_group5 income 393134 23652582 23451725
#> 26: male age_group6 income 33693 2041916 2109878
#> 27: m age_group6 income 33693 2041916 2109878
#> 28: female Total income 11690929 692934008 692999051
#> 29: f Total income 11690929 692934008 692999051
#> 30: female age_group1 income 4933383 288264077 288219797
#> 31: f age_group1 income 4933383 288264077 288219797
#> 32: female ag1a income 4933383 288264077 288219797
#> 33: f ag1a income 4933383 288264077 288219797
#> 34: female age_group2 income 2880740 171480336 171502913
#> 35: f age_group2 income 2880740 171480336 171502913
#> 36: female ag2a income 2880740 171480336 171502913
#> 37: f ag2a income 2880740 171480336 171502913
#> 38: female age_group3 income 2238777 135131663 135075194
#> 39: f age_group3 income 2238777 135131663 135075194
#> 40: female age_group4 income 1155033 67446081 67446549
#> 41: f age_group4 income 1155033 67446081 67446549
#> 42: female age_group5 income 455017 28849616 28859864
#> 43: f age_group5 income 455017 28849616 28859864
#> 44: female age_group6 income 27979 1762235 1664830
#> 45: f age_group6 income 27979 1762235 1664830
#> sex age vname uws ws pws
tab$numtab("savings")
#> sex age vname uws ws pws
#> 1: Total Total savings 2273532 134518023 134513574.8
#> 2: Total age_group1 savings 982386 57935027 57935605.0
#> 3: Total ag1a savings 982386 57935027 57935605.0
#> 4: Total age_group2 savings 552336 32523348 32525608.1
#> 5: Total ag2a savings 552336 32523348 32525608.1
#> 6: Total age_group3 savings 437101 26265889 26272668.8
#> 7: Total age_group4 savings 214661 12467508 12464910.1
#> 8: Total age_group5 savings 80451 4960971 4962553.6
#> 9: Total age_group6 savings 6597 365280 369217.0
#> 10: male Total savings 1159816 68512317 68515227.4
#> 11: m Total savings 1159816 68512317 68515227.4
#> 12: male age_group1 savings 517660 30546216 30543797.5
#> 13: m age_group1 savings 517660 30546216 30543797.5
#> 14: male ag1a savings 517660 30546216 30543797.5
#> 15: m ag1a savings 517660 30546216 30543797.5
#> 16: male age_group2 savings 280923 16551066 16553928.8
#> 17: m age_group2 savings 280923 16551066 16553928.8
#> 18: male ag2a savings 280923 16551066 16553928.8
#> 19: m ag2a savings 280923 16551066 16553928.8
#> 20: male age_group3 savings 214970 12836619 12842366.6
#> 21: m age_group3 savings 214970 12836619 12842366.6
#> 22: male age_group4 savings 99420 5795677 5790691.0
#> 23: m age_group4 savings 99420 5795677 5790691.0
#> 24: male age_group5 savings 43233 2604461 2589031.6
#> 25: m age_group5 savings 43233 2604461 2589031.6
#> 26: male age_group6 savings 3610 178278 179192.5
#> 27: m age_group6 savings 3610 178278 179192.5
#> 28: female Total savings 1113716 66005706 66009443.1
#> 29: f Total savings 1113716 66005706 66009443.1
#> 30: female age_group1 savings 464726 27388811 27394755.1
#> 31: f age_group1 savings 464726 27388811 27394755.1
#> 32: female ag1a savings 464726 27388811 27394755.1
#> 33: f ag1a savings 464726 27388811 27394755.1
#> 34: female age_group2 savings 271413 15972282 15974225.2
#> 35: f age_group2 savings 271413 15972282 15974225.2
#> 36: female ag2a savings 271413 15972282 15974225.2
#> 37: f ag2a savings 271413 15972282 15974225.2
#> 38: female age_group3 savings 222131 13429270 13423492.6
#> 39: f age_group3 savings 222131 13429270 13423492.6
#> 40: female age_group4 savings 115241 6671831 6673815.4
#> 41: f age_group4 savings 115241 6671831 6673815.4
#> 42: female age_group5 savings 37218 2356510 2357421.8
#> 43: f age_group5 savings 37218 2356510 2357421.8
#> 44: female age_group6 savings 2987 187002 180198.5
#> 45: f age_group6 savings 2987 187002 180198.5
#> sex age vname uws ws pws
# results can be resetted, too
tab$reset_cntvars(v = "cnt_males")
# we can then set other parameters and perturb again
tab$params_cnts_set(val = p_cnts1, v = "cnt_males")
#> --> setting perturbation parameters for variable 'cnt_males'
tab$perturb(v = "cnt_males")
#> Count variable 'cnt_males' was perturbed.
# write results to a .csv file
tab$freqtab(
v = c("total", "cnt_males"),
path = file.path(tempdir(), "outtab.csv")
)
#> File '/tmp/RtmpV7PINT/outtab.csv' successfully written to disk.
#> NULL
# show results containing weighted and unweighted results
tab$freqtab(v = c("total", "cnt_males"))
#> sex age vname uwc wc puwc pwc
#> 1: Total Total total 4580 271794 4580 271794.0000
#> 2: Total age_group1 total 1969 115924 1971 116041.7491
#> 3: Total ag1a total 1969 115924 1971 116041.7491
#> 4: Total age_group2 total 1143 68184 1144 68243.6535
#> 5: Total ag2a total 1143 68184 1144 68243.6535
#> 6: Total age_group3 total 864 52054 866 52174.4954
#> 7: Total age_group4 total 423 24571 423 24571.0000
#> 8: Total age_group5 total 168 10321 169 10382.4345
#> 9: Total age_group6 total 13 740 12 683.0769
#> 10: male Total total 2296 135847 2298 135965.3336
#> 11: m Total total 2296 135847 2298 135965.3336
#> 12: male age_group1 total 1015 59743 1016 59801.8601
#> 13: m age_group1 total 1015 59743 1016 59801.8601
#> 14: male ag1a total 1015 59743 1016 59801.8601
#> 15: m ag1a total 1015 59743 1016 59801.8601
#> 16: male age_group2 total 571 33900 571 33900.0000
#> 17: m age_group2 total 571 33900 571 33900.0000
#> 18: male ag2a total 571 33900 571 33900.0000
#> 19: m ag2a total 571 33900 571 33900.0000
#> 20: male age_group3 total 424 25549 425 25609.2571
#> 21: m age_group3 total 424 25549 425 25609.2571
#> 22: male age_group4 total 195 11317 194 11258.9641
#> 23: m age_group4 total 195 11317 194 11258.9641
#> 24: male age_group5 total 84 4958 84 4958.0000
#> 25: m age_group5 total 84 4958 84 4958.0000
#> 26: male age_group6 total 7 380 6 325.7143
#> 27: m age_group6 total 7 380 6 325.7143
#> 28: female Total total 2284 135947 2284 135947.0000
#> 29: f Total total 2284 135947 2284 135947.0000
#> 30: female age_group1 total 954 56181 953 56122.1101
#> 31: f age_group1 total 954 56181 953 56122.1101
#> 32: female ag1a total 954 56181 953 56122.1101
#> 33: f ag1a total 954 56181 953 56122.1101
#> 34: female age_group2 total 572 34284 572 34284.0000
#> 35: f age_group2 total 572 34284 572 34284.0000
#> 36: female ag2a total 572 34284 572 34284.0000
#> 37: f ag2a total 572 34284 572 34284.0000
#> 38: female age_group3 total 440 26505 439 26444.7614
#> 39: f age_group3 total 440 26505 439 26444.7614
#> 40: female age_group4 total 228 13254 227 13195.8684
#> 41: f age_group4 total 228 13254 227 13195.8684
#> 42: female age_group5 total 84 5363 84 5363.0000
#> 43: f age_group5 total 84 5363 84 5363.0000
#> 44: female age_group6 total 6 360 5 300.0000
#> 45: f age_group6 total 6 360 5 300.0000
#> 46: Total Total cnt_males 2296 135847 2298 135965.3336
#> 47: Total age_group1 cnt_males 1015 59743 1016 59801.8601
#> 48: Total ag1a cnt_males 1015 59743 1016 59801.8601
#> 49: Total age_group2 cnt_males 571 33900 571 33900.0000
#> 50: Total ag2a cnt_males 571 33900 571 33900.0000
#> 51: Total age_group3 cnt_males 424 25549 425 25609.2571
#> 52: Total age_group4 cnt_males 195 11317 194 11258.9641
#> 53: Total age_group5 cnt_males 84 4958 84 4958.0000
#> 54: Total age_group6 cnt_males 7 380 6 325.7143
#> 55: male Total cnt_males 2296 135847 2298 135965.3336
#> 56: m Total cnt_males 2296 135847 2298 135965.3336
#> 57: male age_group1 cnt_males 1015 59743 1016 59801.8601
#> 58: m age_group1 cnt_males 1015 59743 1016 59801.8601
#> 59: male ag1a cnt_males 1015 59743 1016 59801.8601
#> 60: m ag1a cnt_males 1015 59743 1016 59801.8601
#> 61: male age_group2 cnt_males 571 33900 571 33900.0000
#> 62: m age_group2 cnt_males 571 33900 571 33900.0000
#> 63: male ag2a cnt_males 571 33900 571 33900.0000
#> 64: m ag2a cnt_males 571 33900 571 33900.0000
#> 65: male age_group3 cnt_males 424 25549 425 25609.2571
#> 66: m age_group3 cnt_males 424 25549 425 25609.2571
#> 67: male age_group4 cnt_males 195 11317 194 11258.9641
#> 68: m age_group4 cnt_males 195 11317 194 11258.9641
#> 69: male age_group5 cnt_males 84 4958 84 4958.0000
#> 70: m age_group5 cnt_males 84 4958 84 4958.0000
#> 71: male age_group6 cnt_males 7 380 6 325.7143
#> 72: m age_group6 cnt_males 7 380 6 325.7143
#> 73: female Total cnt_males 0 0 0 0.0000
#> 74: f Total cnt_males 0 0 0 0.0000
#> 75: female age_group1 cnt_males 0 0 0 0.0000
#> 76: f age_group1 cnt_males 0 0 0 0.0000
#> 77: female ag1a cnt_males 0 0 0 0.0000
#> 78: f ag1a cnt_males 0 0 0 0.0000
#> 79: female age_group2 cnt_males 0 0 0 0.0000
#> 80: f age_group2 cnt_males 0 0 0 0.0000
#> 81: female ag2a cnt_males 0 0 0 0.0000
#> 82: f ag2a cnt_males 0 0 0 0.0000
#> 83: female age_group3 cnt_males 0 0 0 0.0000
#> 84: f age_group3 cnt_males 0 0 0 0.0000
#> 85: female age_group4 cnt_males 0 0 0 0.0000
#> 86: f age_group4 cnt_males 0 0 0 0.0000
#> 87: female age_group5 cnt_males 0 0 0 0.0000
#> 88: f age_group5 cnt_males 0 0 0 0.0000
#> 89: female age_group6 cnt_males 0 0 0 0.0000
#> 90: f age_group6 cnt_males 0 0 0 0.0000
#> sex age vname uwc wc puwc pwc
# utility measures for a count variable
tab$measures_cnts(v = "total", exclude_zeros = TRUE)
#> $overview
#> noise cnt pct
#> 1: -2 5 0.1111111
#> 2: -1 9 0.2000000
#> 3: 0 16 0.3555556
#> 4: 1 15 0.3333333
#>
#> $measures
#> what d1 d2 d3
#> 1: Min 0.000 0.000 0.000
#> 2: Q10 0.000 0.000 0.000
#> 3: Q20 0.000 0.000 0.000
#> 4: Q30 0.000 0.000 0.000
#> 5: Q40 1.000 0.001 0.015
#> 6: Mean 0.756 0.017 0.034
#> 7: Median 1.000 0.001 0.016
#> 8: Q60 1.000 0.001 0.021
#> 9: Q70 1.000 0.002 0.024
#> 10: Q80 1.000 0.004 0.033
#> 11: Q90 1.600 0.049 0.100
#> 12: Q95 2.000 0.143 0.196
#> 13: Q99 2.000 0.167 0.213
#> 14: Max 2.000 0.167 0.213
#>
#> $cumdistr_d1
#> cat cnt pct
#> 1: 0 16 0.3555556
#> 2: 1 40 0.8888889
#> 3: 2 45 1.0000000
#>
#> $cumdistr_d2
#> cat cnt pct
#> 1: [0,0.02] 40 0.8888889
#> 2: (0.02,0.05] 40 0.8888889
#> 3: (0.05,0.1] 41 0.9111111
#> 4: (0.1,0.2] 45 1.0000000
#> 5: (0.2,0.3] 45 1.0000000
#> 6: (0.3,0.4] 45 1.0000000
#> 7: (0.4,0.5] 45 1.0000000
#> 8: (0.5,Inf] 45 1.0000000
#>
#> $cumdistr_d3
#> cat cnt pct
#> 1: [0,0.02] 26 0.5777778
#> 2: (0.02,0.05] 40 0.8888889
#> 3: (0.05,0.1] 40 0.8888889
#> 4: (0.1,0.2] 43 0.9555556
#> 5: (0.2,0.3] 45 1.0000000
#> 6: (0.3,0.4] 45 1.0000000
#> 7: (0.4,0.5] 45 1.0000000
#> 8: (0.5,Inf] 45 1.0000000
#>
#> $false_zero
#> [1] 0
#>
#> $false_nonzero
#> [1] 0
#>
#> $exclude_zeros
#> [1] TRUE
#>
# modifications for perturbed count variables
tab$mod_cnts()
#> sex age row_nr pert ckey countvar
#> 1: Total Total 15 0 0.4611279 total
#> 2: Total age_group1 17 2 0.9584550 total
#> 3: Total ag1a 17 2 0.9584550 total
#> 4: Total age_group2 16 1 0.9296913 total
#> 5: Total ag2a 16 1 0.9296913 total
#> ---
#> 131: f age_group4 -1 0 0.0000000 cnt_males
#> 132: female age_group5 -1 0 0.0000000 cnt_males
#> 133: f age_group5 -1 0 0.0000000 cnt_males
#> 134: female age_group6 -1 0 0.0000000 cnt_males
#> 135: f age_group6 -1 0 0.0000000 cnt_males
# display a summary about utility measures
tab$summary()
#> ┌──────────────────────────────────────────────┐
#> │Utility measures for perturbed count variables│
#> └──────────────────────────────────────────────┘
#> ── Distribution statistics of perturbations ────────────────────────────────────
#> countvar Min Q10 Q20 Q30 Q40 Mean Median Q60 Q70 Q80 Q90 Q95 Q99 Max
#> 1: total -1 -1 -1 -1 0 0.089 0 0 0.8 1 1.6 2.0 2 2
#> 2: cnt_highincome -1 -1 -1 0 0 0.311 0 1 1.0 1 2.0 2.0 2 2
#> 3: cnt_males -1 -1 0 0 0 0.200 0 0 0.0 1 1.0 1.8 2 2
#>
#> ── Distance-based measures ─────────────────────────────────────────────────────
#> ✔ Variable: 'total'
#>
#> what d1 d2 d3
#> 1: Min 0.000 0.000 0.000
#> 2: Q10 0.000 0.000 0.000
#> 3: Q20 0.000 0.000 0.000
#> 4: Q30 0.000 0.000 0.000
#> 5: Q40 1.000 0.001 0.015
#> 6: Mean 0.756 0.017 0.034
#> 7: Median 1.000 0.001 0.016
#> 8: Q60 1.000 0.001 0.021
#> 9: Q70 1.000 0.002 0.024
#> 10: Q80 1.000 0.004 0.033
#> 11: Q90 1.600 0.049 0.100
#> 12: Q95 2.000 0.143 0.196
#> 13: Q99 2.000 0.167 0.213
#> 14: Max 2.000 0.167 0.213
#>
#> ✔ Variable: 'cnt_males'
#>
#> what d1 d2 d3
#> 1: Min 0.000 0.000 0.000
#> 2: Q10 0.000 0.000 0.000
#> 3: Q20 0.000 0.000 0.000
#> 4: Q30 0.000 0.000 0.000
#> 5: Q40 1.000 0.001 0.016
#> 6: Mean 0.778 0.017 0.034
#> 7: Median 1.000 0.001 0.016
#> 8: Q60 1.000 0.001 0.021
#> 9: Q70 1.000 0.002 0.024
#> 10: Q80 1.000 0.005 0.034
#> 11: Q90 1.400 0.060 0.100
#> 12: Q95 2.000 0.143 0.196
#> 13: Q99 2.000 0.143 0.196
#> 14: Max 2.000 0.143 0.196
#>
#> ✔ Variable: 'cnt_highincome'
#>
#> what d1 d2 d3
#> 1: Min 0.0 0.000 0.000
#> 2: Q10 0.0 0.000 0.000
#> 3: Q20 0.0 0.000 0.000
#> 4: Q30 1.0 0.008 0.045
#> 5: Q40 1.0 0.010 0.052
#> 6: Mean 0.9 0.024 0.065
#> 7: Median 1.0 0.011 0.054
#> 8: Q60 1.0 0.015 0.061
#> 9: Q70 1.0 0.024 0.078
#> 10: Q80 1.0 0.035 0.127
#> 11: Q90 2.0 0.067 0.131
#> 12: Q95 2.0 0.075 0.135
#> 13: Q99 2.0 0.143 0.196
#> 14: Max 2.0 0.143 0.196
#>
#> ┌──────────────────────────────────────────────────┐
#> │Utility measures for perturbed numerical variables│
#> └──────────────────────────────────────────────────┘
#> ── Distribution statistics of perturbations ────────────────────────────────────
#> Warning: no non-missing arguments to min; returning Inf
#> Warning: no non-missing arguments to max; returning -Inf
#> Warning: no non-missing arguments to min; returning Inf
#> Warning: no non-missing arguments to max; returning -Inf
#> vname Min Q10 Q20 Q30 Q40 Mean
#> 1: expend Inf NA NA NA NA NaN
#> 2: income -200856.60 -61499.112 -44903.362 -39167.964 -29764.378 -12354.064
#> 3: savings -15429.42 -5777.418 -2967.973 -1819.231 913.437 237.221
#> 4: mixed Inf NA NA NA NA NaN
#> Median Q60 Q70 Q80 Q90 Q95 Q99
#> 1: NA NA NA NA NA NA NA
#> 2: 468.356 10247.663 22577.239 34365.341 65043.398 67961.875 85347.938
#> 3: 1943.244 2094.693 2862.792 3737.088 5865.515 5944.149 6412.108
#> 4: NA NA NA NA NA NA NA
#> Max
#> 1: -Inf
#> 2: 95471.07
#> 3: 6779.79
#> 4: -Inf
# }